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Abstract 

The conventional integral approach is very well established in probabilistic seismic hazard 
assessment (PSHA). However, Monte-Carlo (MC) simulations may become an efficient and 
flexible option against conventional PSHA when more complicated factors (e.g., spatial 
correlation of ground shaking) are involved.  Under the framework of the STREST project, 
the major objective of Task 3.2 is to define hazard measures and extreme event scenarios 
for geographically extended lifeline systems with emphasis on continuous pipelines. To this 
end, this report describes the implementation of MC simulation techniques for computing the 
annual exceedance rates of dynamic ground-motion intensity measures (GMIMs) (e.g., peak 
ground acceleration-PGA, peak ground velocity-PGV and spectral acceleration-Sa) as well 
as permanent fault displacement that are of significance for the risk assessment of 
geographically distributed and extended structures. We use the multi-scale random fields 
(MSRFs) technique to incorporate spatial correlation and near-fault directivity while 
generating MC simulations to assess the probabilistic seismic hazard of dynamic GMIMs. 
Our approach is capable of producing conditional hazard curves as well. The implementation 
of MC simulations for permanent fault displacement hazard accounts for surface rupture, 
mapping accuracy and occurrence probabilities of on- and off-fault displacements. We show 
various parametric case studies to illustrate the potential use of the proposed procedures in 
the hazard of geographically distributed and extended structural systems. Since permanent 
fault displacement is the most critical ground-motion intensity measure for design and 
performance assessment of pipeline systems, the report particularly focuses on the definition 
of hazard corresponding to rare and extreme event scenarios (low-probability and high-
consequence events) for permanent fault displacement hazard.   

Keywords: continuous pipelines, Monte Carlo simulations, probabilistic seismic hazard 





 

 iii 

 

Acknowledgments 

We thank Dr. Mark Petersen and Dr. Rui Chen for explaining the case study in Petersen et 
al. (2011) and sharing their probabilistic fault displacement hazard assessment codes for the 
validation of our methodology. 

 





 

 v 

 

Deliverable Contributors 

Boğaziçi University – Kandilli Observatory 
and Earthquake Research Institute 

Sinan Akkar 

  

Boğaziçi University – Kandilli Observatory 
and Earthquake Research Institute Yin Cheng 

  

Boğaziçi University – Kandilli Observatory 
and Earthquake Research Institute Eren Uçkan 

  

Boğaziçi University – Kandilli Observatory 
and Earthquake Research Institute Mustafa Erdik 

  

 





 

 vii 

 

Table of Contents 

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  i 	
  

Acknowledgments .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  i i i 	
  

Deliverable Contributors .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  v 	
  

Table of Contents .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  vii 	
  

List of Figures .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  ix 	
  

List of Tables .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  xi 	
  

1 	
   Introduction .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1 	
  

2 	
   Monte-Carlo based multi-scale random fields for dynamic GMIMs .. . . . . . . . . .  3 	
  

2.1	
   NEAR-FAULT DIRECTIVITY EFFECTS ..................................................................... 7	
  

2.2	
   DEVELOPMENT OF HAZARD CURVES FROM MC-BASED MSRFS 
APPROACH ................................................................................................................. 9	
  

2.3	
   COMPUTATION OF CONDITIONAL HAZARD ......................................................... 11	
  

3 	
   Monte-Carlo based hazard for permanent fault displacement .. . . . . . . . . . . . . . .  15 	
  

4 	
   Parametric studies .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  19 	
  

4.1	
   PARAMETRIC STUDIES CONCERNING DYNAMIC GMIMS .................................. 19	
  

4.2	
   PARAMETRIC STUDIES CONCERNING PERMANENT FAULT 
DISPLACEMENT ....................................................................................................... 23	
  

5 	
   Conclusion .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  29 	
  

References .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  31 	
  





 

 ix 

  

List of Figures 

Fig. 2.1  Graphical representation of coarse-scale and fine scale cells in fictitious area. The 
solid diagonal line is the fault. The area is divided into m×n squared coarse-
scale cells. Some of the coarse-scale cells are further refined into ds×ds fine 
scale cells. Note that these coarse-scale cells are located in the vicinity of fault 
segment and they are divided into finer scale cells to better capture the near-
fault directivity effects. The right panel is the close-up view of 4 coarse scale 
cells located in the vicinity of the fault and, for illustration purposes, we show 
one of these coarse scale cells refined into 6×6 fine-scale cells .......................... 4	
  

Fig. 2.2 Illustrative example for intra-event residual sampling at coarse-scale level ............... 6	
  

Fig. 2.3 Generation of intra-event residuals for fine-scale cells: (a) pre-selected coarse-scale 
cells for refining into fine-scale cells (designated by red boxes) and numbering 
of fine-scale cells in these coarse-scale cells, (b) sequential conditional 
simulation process ................................................................................................ 7	
  

Fig. 2.4 Algorithm for considering near-fault forward directivity effects on the spatially 
correlated GMIMs generated from MSRFs approach. µlnGMIM,pulse is the calibrated 
mean GMIM in logarithmic space due to pulse-like ground motions (forward 
directivity). µlnAF is the logarithmic calibration factor for forward directivity effects 
and µlnGMIM,gm is the mean GMIM in logarithmic space computed from 
conventional GMPE. In a similar manner, σlnGMIM,pulse and σlnGMIM,gm are the 
calibrated and original standard deviations of conventional GMPE, respectively. 
Rf is the calibration factor for standard deviation for forward directivity effects. 
For non-pulse case, µlnGMIM,nonpulse is the calibrated mean GMIM in logarithmic 
space due to nonpulse-like ground motions. µlnAF and σlnGMIM,nonpulse are the 
logarithmic calibration factor and standard deviation of GMPE for backward 
directivity effects, respectively .............................................................................. 8	
  

Fig. 2.5 Graphical illustration of conditional hazard assessment for a single secondary GMIM
 ........................................................................................................................... 13	
  

Fig. 3.1 Ruptured fault and site geometry in Petersen et al. (2011) for their proposed PFDHA 
model for strike-slip events ................................................................................. 15	
  

Fig. 3.2 Proposed MC-based permanent fault displacement hazard assessment procedure17	
  

Fig. 4.1  Comparisons of OpenQuake PGA hazard curves with those computed from in-
house MatlabTM codes for their validation for MC-based MSRFs technique. Note 
that this example disregards spatial correlation; near-fault directivity etc. as such 
complex models are not implemented in OpenQuake for conventional 
probabilistic hazard assessment ........................................................................ 20	
  

Fig. 4.2  Distribution of Sa(3s) amplitudes for 475-year return period without (a) and with (b) 
near-fault directivity effects ................................................................................. 21	
  

Fig. 4.3  Distribution of (a) Sa(1.0s) and Sa(1.0s)|Sa(3.0s) for 475-year return period ......... 21	
  



 

x  

 

Fig. 4.4  Effect of spatial correlation (SC) and near-fault forward directivity (NF) effects at 
three different locations for three spectral periods (a) Plan-view of locations, 
sites and the fault segment, (b) joint hazard curves for PGA, (c) joint hazard 
curves for Sa(0.5s) and (d) joint hazard curves for Sa(3s) ................................. 23	
  

Fig. 4.5  Validation of MC-based probabilistic permanent fault displacement method by using 
the case study in Petersen et al. (2011): (a) distribution of 475-year permanent 
fault displacement along the fault strike, (b) comparison of computed 475-year 
on-fault displacement at the center of the fault with Petersen et al. (2011) ....... 24	
  

Fig. 4.6  (a) Fault, pipeline and site lay out: x denotes the pipe crossing location along the 
fault, α is the crossing angle between the pipeline and fault, L is the fault length; 
(b) Mean annual exceedance rates as a function of pipe crossing location for 
permanent ground displacement of 70cm, 250cm and 350cm. ( α = 90o in the 
given example) ................................................................................................... 27	
  

 

 



 

 xi 

  

List of Tables 

Table 4.1  Recommended design levels of seismic hazard ................................................... 25	
  

 





Introduction 

 1 

 

1 Introduction  

 

The consideration of site-to-site variation (spatial correlation) in dynamic GMIMs (e.g., PGA, 
Sa) is important for realistic probabilistic seismic hazard and risk assessment of 
geographically distributed building portfolios and geographically extended lifeline systems. 
The interdependency between the GMIMs (cross-correlation) is also important for such 
structural systems because the vulnerability of some of their components is sensitive to the 
conditional occurrence of multiple GMIMs. Apart from these two phenomena, the proper 
amplitude estimations of static (permanent fault displacement) and dynamic GMIMs is 
crucial for geographically distributed buildings or geographically extended lifelines located in 
the close proximity to fault segments.  

Studies to model spatial correlation (e.g., Boore et al., 2003; Wang and Takada, 2005; Goda 
and Hong, 2008; Jayaram and Baker, 2009; Esposito and Iervolino, 2011; Goda and 
Atkinson, 2009), cross-correlation (e.g., Baker and Jayaram, 2008; Bradley, 2011; Bradley, 
2012a, 2012b; Cimellaro, 2013; Akkar et al., 2014c; 2014d), combined effects of spatial- and 
cross-correlation (e.g., Goda and Hong, 2008; Loth and Baker, 2013) as well as near-fault 
effects for static and dynamic GMIMs (e.g., Stepp et al., 2001; Youngs et al., 2003; Petersen 
et al., 2011; Somerville, 2003; Tothong et al., 2007; and Shahi and Baker, 2011; Bayless 
and Somerville, 2013; Chiou and Spudich, 2013; Rowshandel, 2013) are abundant in the 
literature. There are also several papers showing their implementations by using 
conventional probabilistic seismic hazard assessment (PSHA; Cornell, 1968) (e.g., Iervolino 
et al., 2010; Chioccarelli et al., 2012; Shahi and Baker, 2011; Stepp et al., 2001; Youngs et 
al., 2003; Petersen et al., 2011). Alternative to conventional PSHA, Monte Carlo (MC) 
simulation techniques have become appealing in probabilistic hazard and risk calculations 
as they provide some flexibility, transparency and robustness to the consideration of above 
stated physical models (e.g., Sokolov and Wenzel, 2011a, 2011b; Musson, 1999, 2000; 
Crowley and Bommer, 2006; Assatourians and Atkinson, 2012; Atkinson and Goda, 2013).  

Consideration of spatial correlation for MC-based seismic hazard assessment has been 
done by generating normally distributed and spatially correlated GMIMs via Cholesky 
decomposition (e.g., Sokolov and Wenzel, 2011a). The normal sampling of GMIMs uses the 
mean and standard deviation of the ground-motion prediction equations (GMPEs) that 
remain constant for the sites (cells) considered in the simulations. This approach may 
experience some practical difficulties in some cases, for example, while incorporating the 
forward directivity effects on the sampled GMIMs as narrow-band models opt for modifying 
the standard deviation of GMPEs depending on the occurrence likelihood of directivity pulse 
at a site (e.g., Shahi and Baker, 2011).  

This report provides the theory and application of MC simulation technique for probabilistic 
seismic hazard assessment of geographically distributed and extended structural systems. 
We apply MC simulations together with the multi-scale random fields (MSRFs) approach to 
account for spatial correlation in estimating joint hazard of dynamic GMIMs. This method is 
implemented to understand the mechanical behavior of heterogeneous soil medium under 
different levels of uncertainty (Chen et al., 2012). We propagate its application into PSHA as 
an alternative to Cholesky decomposition technique. MSRFs can account for spatial 
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correlation at different precision scales in order to fine-tune the accuracy of hazard curves at 
the mesh grids of interest. It also permits the modifications to standard deviations at several 
grid points to account for specific earthquake features such as forward directivity effects. 
Using these particular properties of MSRFs technique and flexibility provided by MC 
simulations, we further implemented the near-fault directivity effects on the hazard 
computations. The MC-based simulations are also implemented to permanent fault 
displacement hazard by using the model provided in Petersen et al. (2011). To our 
knowledge, this is the first time that MC-based hazard calculation is used for probabilistic 
fault displacement hazard assessment. The report first describes the theory of probabilistic 
hazard assessment for dynamic GMIMs through the application of MC-based MSRFs 
approach with the inclusion of near-fault effects and conditional hazard. The theoretical part 
extends to the explanations of how MC simulations are used in the assessment of 
probabilistic fault displacement hazard. We present several parametric case studies to show 
the strengths of the proposed procedures for assessing the seismic hazard of geographically 
distributed building portfolios and geographically extended lifeline systems. The parametric 
case studies on fault displacement hazard is of particular focus in this report, as the main 
objective of Deliverable 3.2 is the determination of low-probability-high-consequence hazard 
levels for continuous pipelines. Such hazard levels are generally referred to as “perfect 
storm” and “black swan” in risk analysis and their consideration (e.g., extreme cascading 
ruptures by adding knowledge from the physics of rupture propagation by dynamic stress; 
Mignan et al., 2015) would let the owner evaluate the performance of the structural system 
under critical circumstances. 
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2 Monte-Carlo based multi-scale random fields 
for dynamic GMIMs 

The multi-scale random fields (MSRFs) hierarchically characterize the randomness of a 
physical process at different resolution levels. We use this concept together with MC 
simulation to generate spatially correlated intra-event (site-to-site) residuals by following 
Chen et al. (2012) who studied the mechanical behavior of heterogeneous soil medium 
under different levels of uncertainty. The spatially correlated intra-event residuals leads to 
sampling of spatially correlated GMIMs over the region of interest. The sampled GMIMs can 
account for near-fault directivity effects depending on the relative location of the site with 
respect to the fault. Our procedure also considers cross-correlation of sampled primary and 
secondary GMIMs to assess conditional hazard. The overall MSRFs theory and its 
implementation are discussed bellow.  

We implement two scale levels (coarse-scale and fine-scale) while generating spatially 
correlated intra-event residuals. Fig. 2.1 illustrates the coarse-scale and fine-scale random 
fields (coarse-scale and fine-scale cells). The sampled intra-event residuals in a coarse-
scale cell are the average of sampled intra-event residuals within the corresponding coarse-
scale cell. This relationship is given in Eq. (2.1) where Z stands for the sampled intra-event 
residual. The indices “1” and “2” designate coarse-scale and fine-scale cells, respectively. n 
is the number of fine-scale cells within the coarse-scale cell and b represents the index 
number of the coarse-scale cell. 

1, 2,1

1 n
b bii

Z Z
n =

= ∑  (2.1) 

The intra-event residuals are sampled via MC simulation and we make use of the intra-event 
standard deviation of the GMPE used in the entire process. The intra-event standard 
deviation accounts for the variability in sampled intra-event residuals. Spatial correlation is 
considered while sampling the intra-event residuals to mimic the interdependency of 
generated GMIMs at closely spaced sites (cells) because the waveform radiation patterns 
are coherent at close sites under a given earthquake. The intra-event residual sampling 
starts from coarse-scale fields and extend into fine-scale as well as coarse-to-fine scale cells 
through sequential conditional simulation. The sequential conditional simulation transfers the 
knowledge of previously sampled intra-event residuals to the next sampled intra-event 
residual.  
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Fig. 2.1  Graphical representation of coarse-scale and fine scale cells in fictitious area. 
The solid diagonal line is the fault. The area is divided into m×n squared coarse-scale 

cells. Some of the coarse-scale cells are further refined into ds×ds fine scale cells. 
Note that these coarse-scale cells are located in the vicinity of fault segment and they 
are divided into finer scale cells to better capture the near-fault directivity effects. The 

right panel is the close-up view of 4 coarse scale cells located in the vicinity of the 
fault and, for illustration purposes, we show one of these coarse scale cells refined 

into 6×6 fine-scale cells 

Although MC-based intra-event residual sampling starts at coarse-scale level, the sampling 
distributions of coarse-scale and fine-scale cells are directly related to each other. The intra-
event residual distribution at fine-scale level is normal with zero mean and standard 
deviation σZ2. Note that σZ2 is the intra-event standard deviation of the pertaining GMPE 
used in the calculations. Eq. (2.1) leads to the below expressions to compute the mean (µZ1) 
and standard deviation (σZ1) of normally distributed intra-event residuals for coarse-scale 
cells.   

1 1 2 2 21 1 1

1 1 1( ) ( ) ( ) [ ] 0n n n
Z i i ii i i

E Z E Z E Z E Z
n n n

µ
= = =

= = = = =∑ ∑ ∑
 (2.2) 

2 2 2 2
1 1 1 1 2 , 2 2 22 1 1

1[ ] [ ] [ ] 0 n n
Z Z i Z j Z i Z ji j

E Z E Z E Z
n

σ ρ σ σ
= =

= − = − = ⋅ ⋅∑ ∑  (2.3) 

In Eq. (2.3), ρZ2i,Z2j is the spatial correlation coefficient between two fine-scale cells that is 
controlled by the separation distance between them. As discussed in the introductory 
section, there is a handful of spatial correlation models in the literature for calculating ρZ2i,Z2j 
(e.g., Goda and Hong, 2008). σZ2i and σZ2j are the intra-event residual standard deviations of 
the ith and jth fine-scale cells, respectively. Z is the sampled intra-event residual, n is the 
number of fine-scale cells in the corresponding coarse-scale cell and indices 1 and 2 
indicate coarse-scale and fine-scale cells, respectively. E denotes the expected value 
operator. The spatial correlation coefficient between two fine-scale cells, ρZ2i,Z2j, is used to 
derive spatial correlation coefficients for coarse-to-coarse scale and coarse-to-fine scale 
cells. These expressions are given in Eq. (2.4) and Eq. (2.5) and are used to sample intra-
event residuals by sequential conditional simulation.  
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 (2.5) 

In the above expressions, ρZ1a,Z1b and ρZ2,Z1a refer to coarse-to-coarse scale and fine-to-
coarse scale correlation coefficients, respectively. The parameters a and b indicate the index 
numbers of coarse-scale cells. Eq. (2.6) shows the joint distribution expression used in the 
spatially correlated intra-event sampling by conditional sequential simulation.  

( )
20

~ , ,n n np

p pn pp

Z
N N

σ⎛ ⎞⎡ ⎤⎡ ⎤ ⎡ ⎤
= ⎜ ⎟⎢ ⎥⎢ ⎥ ⎢ ⎥⎜ ⎟⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦⎝ ⎠0Z

Σ
∑

Σ Σ
µ  (2.6) 

The subscripts n and p describe the “next” and “previously” generated intra-event residuals, 
respectively in the above equation. The vector Z=[Zn Zp] follows a joint normal distribution 
with a vector of zero mean and covariance matrix, ∑. The distribution of the next sampled 
data (Zn) is a univariate normal distribution conditioned on the previously sampled 
realizations (Zp) that is given in Eq. (2.7) and Eq. (2.8). 

( )1 2 1| ~ ,n p np pp np pp pnZ N σ− −⎡ ⎤= ⋅ ⋅ − ⋅ ⋅⎣ ⎦Z z zΣ Σ Σ Σ Σ  (2.7) 

,COV ,
i j i ji j Z Z Z ZZ Z ρ σ σ⎡ ⎤ = ⋅ ⋅⎣ ⎦  (2.8) 

While sampling the intra-event residuals of coarse-scale cells, the covariance matrix (∑) 
given in Eq. (2.8) considers the spatial correlation between two coarse-scale cells as shown 
in Eq. (2.4) equation reference goes here. The corresponding intra-event standard 
deviations σZi and σZj can be calculated from Eq. (2.3). If the intra-event residual sampling is 
for fine-scale cells, the covariance matrix should consider the spatial correlation between two 
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fine-scale cells (ρZ2i,Z2j), two coarse-scale cells (Eq. (2.4)) as well as one coarse-scale cell 
and one fine-scale cell (Eq. (2.5)). Accordingly, the intra-event standard deviations in Eq. 
(2.8) would correspond to one of these three cases for the intra-event residual sampling of 
fine scale cells. These concepts are further clarified in the following paragraphs. 

Fig. 2.2 illustrates the generation of intra-event residuals at coarse-scale level. The area of 
interest is divided into a number of coarse-scale cells and indexed from left-to-right and 
bottom-to-top as given in the leftmost side of Fig. 2.2. The sequential indices are resorted in 
a random manner to generate a new (random) sequence of indices (middle part in Fig. 2.2). 
Following the new order of randomized coarse-scale cells, the intra-event residuals are 
generated for each cell at the coarse-scale level by using the sequential conditional 
simulation procedure as summarized in Eq. (2.6), Eq. (2.7) and Eq. (2.8). The intra-event 
residual of first coarse-scale cell (Z3 in the illustrative example as given in the rightmost part 
in Fig. 2.2) is sampled as a univariate normal distribution. The intra-event residual of coarse-
scale cell following the first one (Z5 in Fig. 2.2) is sampled by using the sampled intra-event 
residual of first coarse-cell (Z3). In essence, while generating the intra-event residual of the 
“next” cell, Zn, the previously generated intra-event residuals become the entries in Zp. The 
procedure is recursively repeated until all the intra-event residuals in the coarse-scale cells 
are sampled. 

 
Fig. 2.2 Illustrative example for intra-event residual sampling at coarse-scale level 

The intra-event residual simulation of coarse-scale cells is followed by a similar set of 
simulations at fine-scale level. This process is illustrated in Fig. 2.3 as the continuation of the 
example case in Fig. 2.2. Although the entire coarse-scale cells can be refined into fine-
scale cells to generate the intra-event residuals at the fine-scale level, this process may 
bring computational burden depending on the size of the area of interest, the number of 
coarse-scale cells as well as the level of mesh gridding at the fine-scale level (i.e., the 
number of fine-scale cells in coarse-scale cells). We prefer pre-defining the coarse-scale 
cells to be refined into fine-scale cells in our procedure. The level of precision for observing 
the near-fault effects on hazard computations or requirements to be fulfilled in the 
development of conditional hazard curves can play a role on the number of pre-defined 
coarse-scale cells for fine-scale mesh gridding. The order of coarse-scale cells to be refined 
into fine-scale cells should follow the random indexing used while generating the intra-event 
residuals of coarse-scale cells. In the follow-up example given in Fig. 2.3, the coarse-scale 
cells indexed as #2 and #3 are chosen to be refined into fine-scale cells (Fig. 2.3.a). Note 
that the random coarse-scale cell indexing given in Fig. 2.2 indicates that conditional 
sequential simulation for fine-scale cells should start from coarse-scale cell #3 and should be 
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followed by refining the coarse-scale cell #2. Similar to the indexing technique given in Fig. 
2.2, the fine-scale cells in the #2 and #3 coarse-scale cells are numbered from left-to-right 
and from bottom-to-top as shown in Fig. 2.3.a. For this illustrative case, each coarse-scale 
cell is mesh gridded into 2×2 fine-scale cells. The fine-scale cell indices are then randomized 
(leftmost part in Fig. 2.3.b) to start sequential conditional simulation. For example, the 
randomized indices of fine-scale cells in the #3 coarse-scale cell are [4, 2, 3, 1]. As 
presented in the illustrative case in Fig. 2.3, the intra-event residual of the #4 fine-scale cell 
in the #3 coarse-scale cell (Z3,4) is sampled by using Eq. (2.6) to Eq. (2.8) where Zp contains 
all previously sampled coarse-scale cell intra-event residuals. The intra-event residual 
sampling Z3,2, Z3,3 and Z3,1 is followed after Z3,4. After each realization, the corresponding 
sampled intra-event residual is an entry in Zp. Upon the sampling of all intra-event residuals 
in the fine-scale cells of a coarse-scale cell (e.g., #3 coarse-scale cell in Fig. 2.3), it is 
removed from the previously sampled realizations vector, Zp. The entire process is repeated 
until the sampling of all intra-event residuals at fine-scale level is finished in the pre-defined 
coarse-scale random fields. The following section extends our approach to include near-fault 
forward directivity effects on the spatially correlated dynamic GMIMs generated via MC-
based MSRFs approach. 

 
Fig. 2.3 Generation of intra-event residuals for fine-scale cells: (a) pre-selected 

coarse-scale cells for refining into fine-scale cells (designated by red boxes) and 
numbering of fine-scale cells in these coarse-scale cells, (b) sequential conditional 

simulation process 

2.1 NEAR-FAULT DIRECTIVITY EFFECTS 

Pulse-like ground motions due to superposed propagation velocities of rupture and seismic 
waves (forward directivity) induce significantly large demands on structures. Such specific 
ground motions are generally observed at the near-fault sites. Most of the conventional 
GMPEs do not model near-fault forward directivity so seismic hazard assessment via 
conventional ground-motion characterization may fail to estimate the near-fault ground-
motion amplitudes for future earthquakes. We implemented the near-fault directivity model of 
Shahi and Baker (2011) to account for the likely change of ground-motion amplitudes in the 
vicinity of faults. The Shahi and Baker model predicts the probability of pulse-like ground 
motions occurring at a site by considering the orientations of induced seismic waveforms 
relative to the strike of the fault. It amplifies the amplitudes of spectral ordinates in the vicinity 

	
  

(a) (b) 
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of pulse period, Tp, by empirically calibrating the median and standard deviations of ground-
motion estimates from conventional GMPEs. The reader is referred to Shahi and Baker 
(2011) for the details of the model. 

Fig. 2.4 shows the overall algorithm for incorporating the near-fault directivity effects to the 
spatially correlated GMIMs generated via MSRFs approach. In essence, we modify the intra-
event standard deviation of the conventional GMPE to sample the spatially correlated intra-
event residuals for sites (coarse and fine-scale cells) located in the near-fault region. 
Considering Tp, we also modify the median estimates of GMIMs for these sites obtained 
from the conventional GMPE. As indicated in the previous paragraph, these modifications 
are based on the Shahi and Baker (2011) model.  

 
Fig. 2.4 Algorithm for considering near-fault forward directivity effects on the spatially 
correlated GMIMs generated from MSRFs approach. µ lnGMIM,pulse is the calibrated mean 
GMIM in logarithmic space due to pulse-like ground motions (forward directivity). µ lnAF 
is the logarithmic calibration factor for forward directivity effects and µ lnGMIM,gm is the 

mean GMIM in logarithmic space computed from conventional GMPE. In a similar 
manner, σ lnGMIM,pulse and σ lnGMIM,gm are the calibrated and original standard deviations of 
conventional GMPE, respectively. Rf is the calibration factor for standard deviation for 

forward directivity effects. For non-pulse case, µ lnGMIM,nonpulse is the calibrated mean 
GMIM in logarithmic space due to nonpulse-like ground motions. µ lnAF and 

σ lnGMIM,nonpulse are the logarithmic calibration factor and standard deviation of GMPE for 
backward directivity effects, respectively 

For each realization of MC simulations (i.e., for each scenario event), we determine the 
probability of observing a pulse at a certain orientation α [P(pulse at  α|pulse)] for near-fault 
sites (cells) by considering their relative locations with respect to the fault strike. We sample 
this probability with binomial distribution. If the forward directivity is more likely to occur 
(Pulse case), we sample Tp assuming log-normal distribution. The value of sampled Tp leads 
to the calibration of median ground motion and associated standard deviation of 
conventional GMPE to generate spatially correlated random fields. The Shahi and Baker 
(2011) model disregards the calibration of median ground motion and associated standard 
deviation if Tp < 0.6s. If the backward directivity is more dominant (No Pulse case), then 
depending on the spectral period (T) of GMIM, this model either uses the median ground-
motion estimates and standard deviation of conventional GMPE (T ≤ 1.0s case) or modifies 
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these parameters. The calibrated standard deviations and median ground-motion estimates 
are used for generating spatially correlated GMIMs with forward (or backward) directivity 
effects at coarse- and fine-scale levels. 

The Shahi and Baker model provides calibration factors for the total standard deviation of a 
conventional GMPE that can be used for generating total residuals. Since our MSRFs 
approach requires intra-event standard deviation (σε,gm) to sample intra-event residuals, we 
modify the calibration factor proposed in Shahi and Baker as given in Eq. (2.9) and Eq. 
(2.10). We assume that the inter-event standard deviation (ση,gm) does not change for any 
given simulated scenario earthquake. This assumption is rational as inter-event standard 
deviation is constant for a specific earthquake. The modified calibration factor is indicated as 
Rfε, pulse in the derivations and replaces Rf while considering the near-fault directivity effects in 
our MSRFs approach. Note that ση,gm and ση,pulse are equal to each other in the derivations 
under constant inter-event standard deviation assumption. 
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The spatial correlation expression, ρη,gm, (Wesson and Perkins 2001; Sokolov Wenzel 
2011a) in Eq. (2.11) can be used together with Eq. (2.10) to express Rfε, pulse as given in Eq. 
(2.12).  
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2.2 DEVELOPMENT OF HAZARD CURVES FROM MC-BASED 
MSRFS APPROACH 

This section describes the procedure of estimating the hazard curves that consists of several 
steps. We first generate a suite of synthetic earthquake catalogs for a given fault located in 
the area of interest. The synthetic catalogs are based on a specific earthquake recurrence 
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model that represents the temporal distribution of seismic activity in the considered fault for a 
certain catalog period. In essence, simulating a suite of synthetic earthquake catalogs 
having magnitude frequency distributions similar to the one dictated by the earthquake 
recurrence model covers a long time span to sufficiently address the low annual exceedance 
rates of earthquakes originating from the considered fault. This approach has been used by 
Musson (2000) and Assatourias and Atkinson (2013) in MC-based PSHA. Musson (2000) 
indicated that a suite of 1000 synthetic catalogs, each spanning a 100-year time interval (i.e., 
a total duration of 100,000 years) would yield reliable estimates of GMIMs for annual 
exceedance rates of 10-3. When the total catalog duration is extended to 1,000,000 years 
(i.e., 10000 synthetic catalog, each covering 100-year period), the accurate annual 
exceedance rates for GMIMs become 10-4. Similar findings are also published by 
Assatourias and Atkinson (2013) as well as Crowley and Bommer (2006). The latter paper 
considers all stochastic events in a single earthquake catalog with a very long time period.  

Our synthetic catalog simulations assume a Poissonian process for earthquake occurrence. 
The earthquakes generated in each artificial catalog are assumed to occur randomly on the 
fault with a uniform distribution along the fault strike and within the seismogenic depth. For 
each scenario event (a rupture on the fault) in the artificial earthquake catalogs, we 
implement the MSRFs approach to sample spatially correlated intra-event residuals at 
coarse- and fine-scale levels. The intra-event residuals are sampled at the centers of 
coarse-scale and fine-scale cells and consider the near-fault directivity effects depending on 
the relative location of the site (cell) with respect to fault geometry. We obtain the total 
residual at each cell by considering the contribution of inter-event residual specific to the 
scenario event. The inter-event residuals are computed from the inter-event standard 
deviation of the GMPE used in the entire process. They are sampled as normal varieties in 
our procedure. The logarithmic mean (median) predictions of GMIM that are computed at the 
centers of coarse-scale and fine-scale cells are superposed with the total residuals to obtain 
the spatially correlated GMIM distribution within the entire random field. As in the case of 
intra-event residual sampling, the median GMIM predictions are modified for near-fault 
directivity effects depending on the site and fault locations at coarse- and fine-scale levels. 

The entire procedure described in the above paragraph is itemized in the following steps: 

1. Define the area of interest together with the fault segment that affects the seismicity in 
the entire area. Subdivide the area into coarse-scale and fine-scale cells with sufficient 
resolution to compute accurate hazard results. The decision on refining coarse-scale 
cells into fine-scale cells depend on many factors such as addressing the near-fault 
directivity effects in the vicinity of fault segment. 

2. Chose a GMPE that is suitable for the tectonic environment as well as the seismicity in 
the area of interest. Eq. (2.13) shows the essential components of a GMPE that are of 
relevance to our discussions. 

( ) ( ), , ,ln , , ;       1, . ,  1,  i j i i j i i jGMIM f M R i m j nθ η ε= + + = … = …  (2.13) 

The first term on the left-hand-side predicts the logarithmic mean of the GMIMi,j of 
interest for the ith earthquake and jth site (designated as µlnGMIM,gm in the previous 
discussions). Mi and Ri,j are the magnitude and source-to-site distance terms of the ith 
earthquake and the jth site (cell). The vector θ  contains other seismological estimator 
parameters to define, for example, site conditions at the jth site and style-of-faulting 
specific to the ith earthquake. The random varieties ηi and εi,j represent the intra-event 



Monte-Carlo based multi-scale random fields for dynamic GMIMs 

 11 

 

and inter-event variability in the predicted GMIMi,j, respectively. They are normally 
distributed with inter-event (ση,gm) and intra-event (σε,gm) standard deviations. Note that m 
and n in Eq. (2.13), represent the total number of simulations and sites (cells) at the 
coarse-scale and fine-scale levels, respectively. The total number of simulations is 
related to the number of earthquakes in the artificially generated earthquake catalogs. 

3. Generate a suite of earthquake catalogs by following the properties of earthquake 
recurrence specific to the fault. The number of earthquake catalogs should be sufficient 
enough to consider the occurrence of rare events (low annual exceedance rates) for 
proper temporal distribution of earthquakes. 

4. For scenario event i, sample spatially correlated εi,j using the MSRFs approach. Make 
necessary calibrations for near-fault directivity effects at coarse-scale and fine-scale 
levels whenever necessary.  

5. For scenario event i, compute the logarithmic mean of GMIMi,j (µlnGMIM,gm) at coarse-scale 
and fine-scale levels. Make necessary calibrations for near-fault directivity effects (i.e., 
modify GMIMi,j either for µlnGMIM,pulse or µlnGMIM,nonpulse) depending on location of the site 
with respect to fault, Tp and spectral period (T) of GMIMi,j.  

6. For scenario event i, compute ηi. 

7. Combine the spatially correlated εi,j, GMIMi,j and ηi using Eq. (2.13). The product is the 
spatially correlated GMIMi,j in the logarithmic domain at coarse- and fine-scale levels. 

8. Repeat steps 4 to 7 for the simulated suite of earthquake catalogs and compute the 
hazard curves for the cells (sites) at coarse- and fine-scale levels from Eq. (2.14).  

( ) 0
0

       
       j

total number of GMIM GMIM at site jGMIM GMIM
total number of simulated earthquakecatalogs catalog period

λ
≥

≥ =
×

(2.14) 

In Eq. (2.14), λj(GMIM ≥ GMIM0) is the mean annual rate of GMIM of interest exceeding a 
threshold level GMIM0 for cell j. Computation of λj(GMIM ≥ GMIM0) for a range of GMIM0 will 
yield the hazard curve at cell j. We note that the computation of hazard curves by MC-based 
MSRFs approach is described by considering a single fault source. If the area of interest is 
exposed to k multiple faults, this procedure is repeated for the other faults. The mean annul 
exceedance rates computed from all sources are then summed up to obtain the final mean 
annual exceedance rate at cell j. 

( ) ( )0 , 0
1

k

j l j
l

GMIM GMIM GMIM GMIMλ λ
=

≥ = ≥∑  (2.15) 

2.3 COMPUTATION OF CONDITIONAL HAZARD 

The discussions in the previous sections describe the theory and implementation of the MC-
based MSRFs approach for the seismic hazard assessment of a single GMIM. The 
conditional seismic hazard assessment, however, is sometimes more critical for a 
geographically distributed structural portfolio and geographically extended infrastructures 
because the seismic performance of some of their components require the consideration of 
multiple GMIMs. The conditional hazard assesses the exceedance rate of the secondary 
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GMIMs conditioned on the occurrence of primary GMIM. The secondary GMIMs can be 
either single or multiple. In case there are multiple secondary GMIMs, they are called as 
first-secondary GMIM, second-secondary GMIM and so forth. The primary and secondary 
GMIMs are related to each other by cross-correlation coefficients, ρIMi,IMj (e.g. Akkar et al., 
2014c; 2014d; Baker and Jayaram, 2008).  

The conventional conditional hazard assessment cross-correlates each secondary GMIM 
with the primary GMIM to compute the conditional exceedance rate of secondary GMIMs 
(Iervolino et al., 2010). The proposed procedure in this paper establishes a different 
structure: each secondary GMIM is cross-correlated with the primary and previously 
generated secondary GMIMs for the conditional exceedance rate of the secondary GMIMs. 
This way the interdependence of primary and secondary GMIMs is more realistically mapped 
on to the conditional exceedance rates. The procedure does not change for the primary 
GMIM. We generate the spatially correlated intra-event residuals and sum them up with the 
independently sampled inter-event residuals to obtain the total residual distribution at 
coarse- and fine-scale levels for the entire earthquake scenarios of the simulated earthquake 
catalogs. The total residual sampling of secondary GMIMs is based on the total residual 
distribution of the primary GMIM and they are generated via sequential conditional 
simulation. The total residuals of the primary and secondary GMIMs have joint multivariate 
normal distribution as described in Eq. (2.16) and Eq. (2.17). 

( )
20

~ , ,IMn IMn IMnp

IMp IMpn IMpp

Z
N N

σ⎛ ⎞⎡ ⎤⎡ ⎤ ⎡ ⎤
= ⎜ ⎟⎢ ⎥⎢ ⎥ ⎢ ⎥⎜ ⎟⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦⎝ ⎠0Z
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,COV , ~
IMi IMj IMi IMjIMi IMj Z Z Z ZZ Z ρ σ σ⎡ ⎤ ⋅ ⋅⎣ ⎦  (2.17) 

Eq.(2.16) and Eq. (2.17) have a format similar to Eq. (2.6) and Eq. (2.8), respectively. ZIMn 
refers to the next generated total residual of secondary GMIM whereas ZIMp is the vector of 
previously generated primary and secondary GMIMs. In a similar manner, σIMn is the total 
standard deviation of the next generated secondary GMIM and ∑IMnp as well as ∑IMpn are the 
covariance vectors of the next and previous GMIMs. The covariance matrix of the previously 
generated GMIMs is designated as ∑IMpp. Note that the covariance terms in Eq. (2.16) 
contain the previously generated primary and secondary GMIMs as the proposed approach 
accounts for the interdependency between these varieties. The covariance relationship to be 
used between the secondary and primary, primary and primary as well as secondary and 
secondary GMIMs, are given in Eq. (2.17). In this expression, ρIMi,IMj is the cross-correlation 
coefficient between GMIMi and GMIMj where they can be primary and secondary, both 
secondary or both primary GMIMs. σZIMi  and σZIMi refer to the corresponding total standard 
deviations. As explained in the previous sections the standard deviation information comes 
from the GMPE used in the overall process. The total residual distribution can further be 
expressed as a univariate normal distribution for the next generated GMIM as given in Eq. 
(2.18), which is analogous to Eq. (2.7) used in the inter-event residual sampling of primary 
GMIM. 

( )1 2 1| ~ ,IMn IMp IMnp IMpp IMn IMnp IMpp IMpnZ N σ− −⎡ ⎤= ⋅ ⋅ − ⋅ ⋅⎣ ⎦Z z zΣ Σ Σ Σ Σ  (2.18) 

In Eq. (2.18) ZIMp is the total residual realizations of the previous GMIMs. Note that we 
describe the proposed procedure to sample cross-correlated total residuals. If the 
considered GMPE provides information about the cross-correlation models of intra- and 
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inter-event residuals separately, it can be modified to sample the cross-correlated intra- and 
inter-event residuals simultaneously to obtain the hazard rate of secondary GMIMs 
conditioned on the primary GMIM. 

In essence, our procedure for conditional hazard assessment uses the previously generated 
primary GMIM to sample the total residuals of secondary GMIMs. If there is a second-
secondary GMIM, its total residuals are sampled by the cross-correlations of primary, first-
secondary and second-secondary GMIMs. This process continues for the entire set of 
secondary GMIMs. The conditional hazard of each secondary GMIM is then developed by 
following the conventional approach given in Eq. (2.14). If there is one secondary GMIM, the 
normal distribution of total residuals of the secondary GMIM will have the following mean 
(µIM2|IM1) and standard deviation (σIM2|IM1): 

In Eq. (2.19), ε is the previously sampled total residual of primary GMIM and   is the cross-
correlation coefficient between the primary and secondary GMIMs. Fig. 2.5 illustrates this 
specific case to develop the hazard curve of the secondary GMIM conditioned on the 
primary GMIM for each cell (site). 

2| 1 1, 2 2
1

IM IM IM IM IM
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ε
µ ρ σ

σ
=  (2.19) 

2
2| 1 2 1, 21IM IM IM IM IMσ σ ρ= −  (2.20) 

 
Fig. 2.5 Graphical illustration of conditional hazard assessment for a single secondary 

GMIM 
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3 Monte-Carlo based hazard for permanent 
fault displacement 

Geographically distributed and extended systems (e.g., gas, water, oil pipelines, highway 
networks, large span bridges or large building stocks covering a wide geographical area) can 
be exposed to severe damage if the faults crossing their footprints rupture at the surface 
leave permanent deformations. The permanent fault displacements are generally estimated 
deterministically from empirical surface rupture vs. magnitude relationships (e.g., Wells and 
Coppersmith, 1994). Inspired from conventional PSHA, Youngs et al. (2003) conducted the 
first pioneering study for assessing probabilistic fault displacement hazard (PFDHA) to 
expresses the annual exceedance rates of fault displacements at different thresholds. This 
approach is improved by Petersen et al. (2011) for strike-slip faults by including the mapping 
accuracy and complexity of the fault trace. Petersen et al. (2011) model the likely occurrence 
of on-fault (D) and off-fault (d) displacements where the former displacement occurs on the 
major ruptured fault and the latter displacement typically represents discontinuous shear-
failures at locations far from the principal fault. 

The ruptured fault segment and site geometry used in the Petersen et al. (2011) model are 
presented in Fig. 3.1. The site is represented as a square cell having a dimension of z and x, 
y denote the coordinates of the center of the site. r is the perpendicular distance from the 
rupture length, L. l denotes the distance measured from the nearest point on the rupture to 
the closest end of the rupture whereas s is the distance from the end of the rupture to the 
end of the fault. The dashed lines in Fig. 3.1 represent the potential deviations in the rupture 
from the mapped fault due to mapping inaccuracy and complexity of the main fault trace. 
The rupture deviations from the mapped fault trace can be assumed as single or multiple 
deviations.   

 
Fig. 3.1 Ruptured fault and site geometry in Petersen et al. (2011) for their proposed 

PFDHA model for strike-slip events 

The annual exceedance rate of on-fault displacement  γ(D ≥ D0) is considered by integrating 
different probabilities in Petersen et al. (2011). These probabilistic terms include (1) the 
uncertainty in rupture location due to random variation of rupture along the fault as well as 
the fault complexity and mapping inaccuracy, f(r); (2) the joint probability to characterize the 
relation between earthquake magnitude (m) and rupture location (s), fM,S(m,s); (3) the 
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probability of observing surface rupture (sr) conditioned on earthquake magnitude, P(sr ≠ 
0|m); (4) given a nonzero surface rupture the probability of observing a nonzero on-fault 
displacement at a site of dimension z, P(D ≠ 0|z, sr ≠ 0) and (5) the probability of on-fault 
displacement exceeding a threshold D0 conditioned on rupture geometry and earthquake 
size, P(D ≥ D0|l/L, m, D ≠ 0). The last conditional probability is lognormal and is developed from a 
predictive model that estimates on-fault displacements from empirical data. The annual 
exceedance rate of off-fault displacement  γ(d ≥ d0) is computed in a similar manner. The first 
three probabilities described for  γ(D ≥ D0) are also considered in  γ(d ≥ d0). In the 
computation of γ(d ≥ d0), the probability of nonzero off-fault displacement given a nonzero 
surface rupture [P(d ≠ 0|r, z, sr ≠ 0)] not only depends on the size of the site (z) but also on the 
perpendicular distance, r, between the site and the rupture. This is because the 
discontinuous off-fault displacements are expected to occur away from the fault due to a 
shears and fractures in the vicinity of principle rupture. The empirical GMPE to describe the 
probability of off-fault displacement exceeding a threshold d0 [P(d ≥ d0|r, m, d ≠ 0)] is a function 
of r and m for γ(d ≥ d0). The next paragraph explains the integration of these probabilities to 
MC-based permanent fault displacement hazard.  

Our MC-based permanent fault displacement hazard assessment starts with the generation 
of synthetic earthquake catalogs to reflect the temporal seismic activity of a fault. The 
procedure for generating synthetic catalogs is the same as described in Section 2.2: each 
synthetic catalog contains a series of events that follows the designated magnitude 
recurrence model within the predefined catalog period. For each event in the synthetic 
catalog, Fig. 3.2 shows the proposed procedure to generate probabilistic on-fault and off-
fault displacements at the sites (cells) covered by the region of interest. The grid size of sites 
(cells) is z (varying from 25 m to 200 m in Petersen et al., 2011 to account for different levels 
of accuracy in rupture probability) and mesh gridding is done within several hundred meters 
(e.g., 150 m) from each side of the fault because fault displacements decay rapidly with 
increasing distance from the ruptured fault segment. Thus, we do not generate grids for the 
entire region as in the case of MC-based MSRFs implemented for dynamic GMIMs. 
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Fig. 3.2 Proposed MC-based permanent fault displacement hazard assessment 
procedure 

We first compute the conditional probability of observing surface rupture on the fault, P(sr ≠ 
0|m), for each scenario event with a designated magnitude m in the earthquake catalog (Eq. 
(3.1)). 
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The conditional probability follows Bernoulli distribution that samples the “success” (sr ≠ 0) or 
“failure” (sr = 0) of a random event under the computed probability given in Eq. (3.1). If 
Bernoulli distribution samples “failure”, both on- and off-fault displacements are zero for that 
scenario event. If the earthquake with surface rupture is sampled, an empirical m vs. L 
scaling relationship is used (e.g., Wells and Coppersmith, 1994) to determine the rupture 
length, L. Note that in the context of extreme events, L can be greater than in standard 
hazard models due to cascading effects. A new L distribution for strike-slip earthquakes in 
the Anatolian Peninsula is given by Mignan et al. (2015) (see also STREST D3.5 report). 
The rupture position (s) is randomly placed along the entire fault assuming a uniform 
distribution. The likely deviation in the rupture location from the mapped fault trace due to 
mapping uncertainty and fault complexity is determined from a two-sided normal probability 
distribution proposed by Petersen et al. (2011) (see Tables 2 and 3 in the referred article). 
After determining the final location of the ruptured segment, the on- and off-fault 
displacements are generated as given in the dashed boxes in Fig. 3.2. The random 
generation of on- and off-fault displacements start with the consideration of probabilities P(D 
≠ 0|z, sr ≠ 0) and P(d ≠ 0|r, z, sr ≠ 0). These probabilities are expressed as power functions and are 
given in a tabular format in Petersen et al. (2011) for different grid sizes. They also follow 
Bernoulli distribution and if the Bernoulli distribution samples “failure” for any one of these 
probabilities, the corresponding fault displacement is taken as zero. (In practice, P(D ≠ 0|z, sr ≠ 

0) can be taken as unity and Bernoulli distribution samples “success” whenever a non-zero 
surface rupture is generated). Otherwise, the on and off-fault displacements are estimated 
from the proposed empirical GMPEs by Petersen et al. (2011). The generic forms of these 
GMPEs are given in Eq. (3.2) and Eq. (3.3). 

ln  (𝐷)   =   𝜇!"(!)  (𝑙/𝐿,𝑚) + 𝜀𝜎  !"(!)) (3.2) 

ln  (𝑑)   =   𝜇!"(!)  (𝑟,𝑚) + 𝜀𝜎  !"(!)) (3.3) 

µln(D) and µln(d) are the logarithmic mean estimates of on- and off-fault displacements, 
respectively. σln(D) and σln(d) describe the logarithmic standard deviations associated with the 
on- and off-fault displacement GMPEs, respectively. ε designates the number of standard 
deviations above or below the logarithmic mean estimates. Consistent with the conventional 
thinking in GMPEs, D and d are log-normal varieties whereas ε is normally distributed in the 
above expressions. Petersen et al. (2011) propose three alternative predictive equations to 
estimate on-fault displacements depending on the observed data from past strike-slip 
earthquakes. These equations are strictly valid for on-fault sites (cells) after considering the 
mapping uncertainty and fault complexity while determining the location of ruptured segment 
on the principal fault. The off-fault displacement predictive model is used at the sites (cells) 
encircling the major ruptured fault segment. The off-fault sites are only within few hundred 



Monte-Carlo based hazard for permanent fault displacement 

18  

 

meters from both sides of the ruptured fault segment due to rapid decay of fault 
displacements with distance.  

The procedure given in Fig. 3.2 is repeated for all the earthquakes in the generated synthetic 
catalogs to compute the on- and off-fault displacement distributions at each cell (site). The 
annual exceedance rates of on-fault and off-fault displacements at each cell for predefined 
threshold levels are determined from the following expressions that are similar to Eq.(2.14).  

𝜆! 𝐷 ≥ 𝐷! = !"!#$  !"#$%&  !"  !!!!  !"  !"#$  !  
!"!#$  !"#$%&  !"  !"#$%&'()  !"#$!!"#$%  !"#"$%&'×  !"#"$%&  !"#$%&

 (3.4) 

𝜆! 𝑑 ≥ 𝑑! = !"!#$  !"#$%&  !"  !!!!  !"  !"#$  !  
!"!#$  !"#$%&  !"  !"#$%&'()  !"#$!!"#$%  !"#"$%&'×  !"#"$%&  !"#$%&

 (3.5) 

In Eq. (3.4) and Eq. (3.5) j refers to the cell index whereas D0 and d0 are the threshold on-
fault and off-fault displacements, respectively. The on-fault and off-fault displacement hazard 
curves at cell j are obtained from the computation of λj(D ≥ D0) and λj(d ≥ d0) for a set of D0 
and d0, respectively. The total permanent displacement hazard curve at cell j is the sum of 
on- and off-fault hazard curves corresponding to cell j. 
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4 Parametric studies  

We present several parametric case studies to show the implementation and implications of 
the theory discussed in this report. The case studies intend to emphasize the flexibility and 
robustness of MC-based simulations for probabilistic hazard assessment of dynamic GMIMs 
and permanent fault displacement. The presented results are important for the probabilistic 
risk assessment of geographically distributed and extended structures. We developed our 
own software, mainly MatlabTM subroutines for running the case studies. Our software 
package was validated by comparisons with OpenQuake (Pagani et al., 2014) and 
crosscheck validation with the original journal papers (by contacting their authors).  

he details of parametric case studies are given in the following subsections. The seismic 
sources are represented as fault segments in the case studies although they could also be 
chosen as area sources with some modifications in the procedures discussed in Section 2. 
The use of area sources would prevent addressing the near-fault effects on dynamic GMIMs.   

4.1 PARAMETRIC STUDIES CONCERNING DYNAMIC GMIMS 

Fig. 4.1 shows the results of the validation example of our codes for a fictitious 90o dipping 
strike-slip fault segment of length 85 km. We consider pure-characteristic earthquake 
recurrence model with characteristic magnitudes ranging between Mw 7 and Mw 7.5. The 
annual slip rate is 15 mm/year for the fictitious fault. We ran 10000 simulations with a 100-
year catalog period (total catalog period is 1,000,000 years) to obtain reliable hazard results 
for mean annual exceedance rates of about 10-4 (Musson, 2000). We used Akkar et al. 
(2014a; 2014b) GMPE to characterize the ground-motion amplitudes in the hazard analyses. 
The same fictitious scenario is modeled in OpenQuake in a conventional manner and the 
PGA hazard curves at the randomly selected rock sites (see upper right corner in Fig. 4.1 for 
the relative locations of sites with respect to the fault) are compared. The results computed 
by our codes agree well with OpenQuake for mean annual exceedance rates up to 10-4. We 
repeated similar verification studies for different dynamic GMIMs and sites with locations 
different than those given in this exercise. These comparisons advocate the reliability of our 
codes to discuss how different levels of complexity (directivity, spatial correlation, conditional 
hazard etc.) are treated by MC-based approaches for probabilistic hazard assessment. 
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Fig. 4.1  Comparisons of OpenQuake PGA hazard curves with those computed from 

in-house MatlabTM codes for their validation for MC-based MSRFs technique. Note that 
this example disregards spatial correlation; near-fault directivity etc. as such complex 

models are not implemented in OpenQuake for conventional probabilistic hazard 
assessment 

Similar to the above validation example, the following parametric case studies use a 90° 
dipping strike-slip fault although our codes can run hazard analyses for other faulting types. 
The fault length is 85 km and its seismogenic depth is taken as 15 km. The fictitious fault is 
assumed to have a slip rate of 15 mm/year producing characteristic earthquakes of Mw 7.0 to 
Mw 7.5. In all case studies, we used a 100-year catalog period and ran 10,000 simulations 
that results in a total catalog interval of 1,000,000 years. The spatial correlation model of 
Jayaram and Baker (2009) is used for the interdependency of dynamic GMIMs at closely 
spaced sites. The Akkar et al. (2014a; 2014b) GMPE and the Akkar et al. (2014c; 2014d) 
cross-correlation coefficients are used for ground-motion characterization and conditional 
hazard computations, respectively. These two studies use the same strong-motion database 
to develop the ground-motion predictive model and the correlations between the spectral 
ordinates. The site condition is fixed in all case studies and is represented by VS30 = 720 m/s. 
The size of coarse cells is chosen as 0.1°×0.1° and they are refined by 4×4 fine scale cells at 
sites closer to the fault. 

Fig. 4.2 shows the influence of near-fault directivity effects on the distribution of 475-year 
return period spectral acceleration at T = 3.0s [Sa(3s)]. Fig. 4.2.a displays the distribution of 
Sa(3s) along the fine and coarse cells when the near-fault directivity effects are disregarded 
in the hazard assessment. The spectral amplitude distribution follows a uniform pattern 
making maximum in the vicinity of entire fault length and decreasing gradually towards 
distant sites from the fault. The spectral amplitude distribution in Fig. 4.2.b considers the 
directivity effects for the same case. The maximum spectral amplitudes are observed at the 
ends of the fault segment. They are approximately 20% to 25% larger with respect to those 
computed by disregarding the forward directivity. The spectral amplitudes in the middle 
portion of the fault segment are smaller in Fig. 4.2.b when compared to the corresponding 
spectral values in Fig. 4.2.a. These observations emphasize the importance of site location 
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with respect to fault orientation when near-fault effects are mapped on to hazard. The 
spectral amplitude comparisons between Fig. 4.2.a and Fig. 4.2.b suggest the insignificance 
of directivity effects for distances greater than 10 km from the fault strike. We note that these 
observations are confined to a specific source configuration and return period (i.e., 475-year 
return period). The influence of forward directivity on spectral amplitudes increases for larger 
return periods and higher seismic activity (i.e., larger slip rates). 

 
Fig. 4.2  Distribution of Sa(3s) amplitudes for 475-year return period without (a) and 

with (b) near-fault directivity effects 

The left and right panels in Fig. 4.3 display the significance of conditional hazard on dynamic 
GMIMs and how it is accounted for by MC-based MSRFs approach. The plots show the 
distributions of Sa(1.0s) (Fig. 4.3a) and Sa(1.0)|Sa(3s) (Fig. 4.3.b) for 475-year return period. 
The distribution of Sa(1.0s) conditioned on Sa(3.0s) displays 10% to 15% lower spectral 
amplitudes with respect to the distribution of Sa(1.0s) at sites closer to the fault. Such 
spectral differences can be of importance for design or performance assessment of high-rise 
buildings under the influence of higher mode effects. For example, Sa(1.0s)|Sa(3.0s) 
distribution could be important for a tall building of 3.0s fundamental period (T1) whose 
second mode (T2 = 1.0s) affects its dynamic response significantly. To this end, the 
approach presented in this article would yield first-hand useful information for the regional 
variation of such vector GMIMs for regional probabilistic risk and loss assessment of building 
inventories (e.g., Weatherill et al. 2015).  

 
Fig. 4.3  Distribution of (a) Sa(1.0s) and Sa(1.0s)|Sa(3.0s) for 475-year return period 

(a) (b) 

(a) (b) 
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Fig. 4.4 illustrates a more complicated case study in which the significance of spatial 
correlation (SC) and near-fault forward directivity (NF) effects is discussed for three spectral 
periods at three different locations relative to the fault segment (Fig. 4.4.a). We consider a 
pair of sites at each location for spatial correlation effects. The pairs are closely spaced at 
locations 2 and 3 whereas the separation distance between the sites at location 1 is 
significantly large. The chosen spectral ordinates represent very short-period (PGA-T = 0.0s; 
Fig. 4.4.b), intermediate-period (T = 0.5s; Fig. 4.4.c) and long-period (T = 3.0s; Fig. 4.4.d) 
ground-motion demands. The comparative plots in Fig. 4.4 immediately suggest that 
consideration of spatial correlation has negligible influence at location 1 due to large 
separation distance between the sites. This observation particularly holds for very short 
period (Fig. 4.4.b) and intermediate period (Fig. 4.4.c) spectral ordinates. For longer periods 
(Fig. 4.4.d), disregarding SC effects at location 1 yields slightly lower spectral amplitudes 
with respect to the case when this effect is taken into consideration. We note that the 
insignificance of NF effects for PGA as well as Sa(0.5s) is location free (i.e. valid for all sites) 
because the forward directivity effects become considerable after T = 0.6s in the Shahi and 
Baker (2011) model. Disregarding spatial correlation has more pronounced effects for the 2nd 
and 3rd locations as the sites are closely spaced at these locations. Seismic hazard 
assessment that overlooks SC always underestimates spectral amplitudes and the 
underestimation increases with increasing annual exceedance rate and spectral period. The 
consideration of NF effects has different implications for the three locations considered in 
this report when periods shift to longer spectral period bands (Fig. 4.4.c). The NF effects are 
immaterial at the first location as it is far from the fault segment (~ 25 km). Consideration of 
NF effects amplifies Sa(3.0s) at location 3 and de-amplifies the same spectral ordinate at 
location 2. As discussed in Fig. 4.2, the near-fault forward directivity effects are pronounced 
at the ends of the fault segments (e.g., location 3) and become minimum at the middle part 
of the fault (e.g., location 2) that results in de-amplification of spectral ordinates.    
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Fig. 4.4  Effect of spatial correlation (SC) and near-fault forward directivity (NF) effects 
at three different locations for three spectral periods (a) Plan-view of locations, sites 

and the fault segment, (b) joint hazard curves for PGA, (c) joint hazard curves for 
Sa(0.5s) and (d) joint hazard curves for Sa(3s) 

4.2 PARAMETRIC STUDIES CONCERNING PERMANENT FAULT 
DISPLACEMENT 

As in the previous section, our first example validates our MatlabTM codes for probabilistic 
permanent fault displacement hazard assessment. We duplicated the case study in Petersen 
et al. (2011) to validate our codes on MC-based probabilistic fault displacement hazard 
assessment. The case study in Petersen et al. (2011) assumes a strike-slip fault with a 
characteristic magnitude of Mw 7 occurring, on average, every 140 years. The authors 
assume nonzero permanent fault displacement whenever there is a surface rupture on the 
fault [i.e., P(D ≠ 0|z, sr ≠ 0) = 1]. They also adopt accurately mapped fault trace scenario in their 

(a) (b) 

(c) (d) 
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example. We used the same assumptions and ran the probabilistic fault displacement 
hazard by generating 40,000 simulations with a catalog period of 100-year. We considered a 
stripe of 150m from both sides of the fault segment and computed the variation of permanent 
ground displacement along the entire fault length at every 100m. The sizes of sites on both 
sides of the fault segment are taken as 25m × 25m. The variation of permanent fault 
displacement is computed at every 1m within the 150m-stripe on both sides of the fault. Fig. 
4.5.a shows the distribution of permanent fault displacement along the fault trace for a 475-
year return period. The permanent fault displacements are maximum on the ruptured fault 
trace and attenuates very rapidly as one moves away from the fault in the perpendicular 
direction. Fig. 4.5.b compares the MC-based probabilistic permanent on-fault displacement 
at the center of the fault with the results of Petersen et al. (2011). The variation in the 
displacement profile is given along the 150m stripe from both sides of the fault. Our MC-
based probabilistic approach yields very similar permanent displacement results to those 
computed from Petersen et al. (2011).    

 
Fig. 4.5  Validation of MC-based probabilistic permanent fault displacement method 

by using the case study in Petersen et al. (2011): (a) distribution of 475-year 
permanent fault displacement along the fault strike, (b) comparison of computed 475-

year on-fault displacement at the center of the fault with Petersen et al. (2011) 

The seismic hazard level for designing pipelines usually depends on the importance of the 
pipelines and the consequences of their failure (e.g., IITK-GSDMA, 2007; ALA, 2005).  Table 
4.1 gives the classification of buried pipelines according to their importance and 
corresponding return periods to describe the seismic hazard levels described for their design 
(IITK-GSDMA, 2007).  The listed target return periods (hazard levels) in Table 4.1 disregard 
the uncertainty in crossing angle and crossing location of pipelines at the fault segment. 
These factors can be important while designing or assessing the performance of continuous 
pipelines. For example, there are about 42 fault zones along the route of the Baku-Tbilisi-
Ceyhan (BTC) pipeline and among these, five are identified as active, namely; Erzurum 
Fault (east and west) (close to the Georgian border) with 60 and 70 degrees of crossing 
angles, North Anatolian Fault (NAF) in midway between the border with 30 degrees of 
crossing angle and Çokak Fault (near Ceyhan) with 90 degrees of crossing angles. The 
uncertainty in the location accuracy of mapped fault is related to the uncertainty involved in 
pipeline crossing. It is an important factor for the probabilistic performance assessment of 
pipeline systems as, for example, some of the aforementioned faults along the BTC pipeline 
route have narrow features with only a few individual splay occurring zones of more than 
10m but some of the other faults have complex formations with multiple fault splays (e.g., 

(a) (b) 
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Erzurum, NAF and Cokak faults). The increase in the splay width is characterized by multiple 
fault planes (related to mapping accuracy) each of which will accommodate displacement 
during a seismic event. This fact would directly inflate the uncertainty in pipeline crossing. 
Thus, the permanent fault displacements to calculate the pipeline thickness to accommodate 
large relative movements that develop axial strains within the pipe cross-section should 
realistically account for the possible uncertainties in fault crossing angle and crossing 
location.     

 Table 4.1  Recommended design levels of seismic hazard 

Pipe class 
Probability of 
exceedance in 

50 years 

Return period 
(Years) 

I 2% 2475 
II 5% 975 
III 10% 475 
IV No seismic design consideration required  

The depicted return periods in Table 4.1 provide indicatives for design level ground-motion 
amplitudes although some of our concerns about these hazard levels are already addressed 
in the previous paragraph. Moreover the performance and design of critical lifelines such as 
continuous pipelines require the consideration of low-probability-high-consequence events 
that are generally referred to as “perfect storm” and “black swan” in risk analysis. 
Consideration of such rare events (e.g., extreme cascading ruptures by adding knowledge 
from the physics of rupture propagation by dynamic stress; Mignan et al., 2015) would let the 
owner evaluate the performance of the structural system under critical circumstances. The 
term “perfect storm” refers to an event resulting in a conjunction of rare but known events 
(Pate-Cornell, 2012). It involves aleatory variability, which is inherent in a random 
phenomenon. The “black swan” events represent the ultimate epistemic uncertainty due to 
lack of fundamental knowledge, where the distribution of a parameter is unknown or even 
the existence of the phenomenon itself is also unknown (Pate-Cornell, 2012). The current 
probability-based seismic risk assessment considers the occurrence likelihoods of events 
and the resulting consequences. The “black swan” events are not foreseeable from usual 
statistical considerations such as correlations, regressions, standard deviations and return 
periods. Bayesian probability is one way of quantifying the risk for extremely rare events. A 
good example for very rare events is the 2011 Tohoku, Japan earthquake that produced 
tsunami waves of 14m in the Northeast of Japan. The unexpected tsunami waves caused 
nuclear meltdown in the Fukushima Daiichi nuclear power plant that was designed for a 
maximum wave height of 5.7m [corresponds to the exceedance rate of which is less than 1% 
in 50 years (INPO, 2011)]. The Fukushima earthquake can be a good example for a “perfect 
storm” case.       

Under the light of above discussions, the next parametric study shows how the location 
uncertainty in pipe crossings along the fault affect the design and performance assessment 
of continuous pipelines subjected to permanent fault displacement. The axial strains (tensile 
or compression) developed in the pipeline due to fault rupture emerging at the surface result 
in various failure modes (e.g., pipe rupture or buckling) at the segments crossing the fault. 
The nature and level of stress concentrations at such critical pipe segments depend on the 
dominant component of fault displacement (normal, reverse, left-lateral or right-lateral slip), 
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pipeline orientation, location of pipe crossing along the fault segment, burial depth, soil or 
backfill material properties, coating, pipe material and geometric properties (steel grade, 
diameter and thickness). As already indicated we will only consider the location uncertainty 
of pipe crossing in this parametric example. We assume that the pipe is steel with a diameter 
of D = 850mm and a thickness of t = 21mm. These properties are taken from the BTC 
pipeline segment crossing the Çokak fault segment. The pipeline crosses the Çokak Fault 
with an angle of 90°. We also assume that the that the backfill material is soft to medium 
sand and the pipe yields in compression or tension, and the effects of local  buckling is 
ignored. We used a simplified pipe-soil interaction model to compute the axial strains and 
corresponding displacement demands at the onset of critical limit states that are discussed 
in the following paragraph for this parametric study.  

Fig. 4.6.a shows a pipeline-fault (strike-slip) configuration to quantify the variation of 
deformation demands on the pipeline segment for different crossing angles (α) and pipe 
crossing locations along the fault trace (designated by x measured from the left end of the 
representative configuration). The annual exceedance rates corresponding to the permanent 
fault displacements of 70cm, 250cm and 350cm are computed for 0 ≤ x ≤ L after running 
40,000 MC simulations for a 100-year catalog period (i.e., 4,000,000 years of total catalog 
duration). The imposed permanent ground displacements grossly represent tensile strains 
developed on the butt-welded continuous pipelines for onset of yielding (70cm) ,10% 
probability of tensile rupture (250cm), and 90% probability of tensile rupture (350cm) when 
pipeline is perpendicular to the fault (i.e.,  α = 90°). The former performance level represents 
the normal operability (pipeline serviceability under frequent events) whereas the second 
displacement limit is used for pressure integrity: an important condition to be satisfied under 
design level ground motions. The last displacement limit (350cm) is assumed to mimic a 
“perfect storm” event and accounts for the aleatory variability due to nature of seismic events 
that can be involved during the economic life of the pipeline. The mean annual exceedance 
rates as a function of pipe crossing location (i.e., x) along the fault segment are given in Fig. 
4.6.b for a fault model rupturing with characteristic magnitudes between Mw 7 and Mw 7.5 
with an average slip rate of 2 cm/year. These parameters may characterize the seismicity in 
Çokak Fault. Fig. 4.6.b depicts the sensitivity of annual exceedance rates to the location of 
pipe crossing. Given any one of the performance levels, the mean annual exceedance rates 
are very low for pipe crossing locations close to the ends of the fault segment. The 
exceedance rates are significantly high towards the center of the fault segment. In essence, 
the permanent fault displacements for the designated pipe performance levels will be the 
result of very rare events for continuous pipelines crossing the fault segments closer to their 
edges. The same plots suggest that relatively more frequent earthquakes should be of 
concern for performance evaluation of continuous pipelines when their fault crossings are 
more likely to occur at the middle portion of the fault segments. Currently, the seismic design 
of continuous pipelines is based on fixed mean annual exceedance rates (e.g., IITK-GSDMA 
2007; ALA 2005) that seem to yield a non-uniform risk and loss assessment for their 
performance verification. Note that the axial strain in the pipe depends on the pipe-fault 
orientation angle (pipe crossing angle) as well as the properties of the fault, pipe and soil. As 
these parameters would vary from on segment to the other, the return periods corresponding 
to these limit states will also change in turn. Therefore, the results presented herein should 
be considered preliminary and generic. 
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Fig. 4.6  (a) Fault, pipeline and site lay out: x denotes the pipe crossing location along 
the fault, α is the crossing angle between the pipeline and fault, L is the fault length; 

(b) Mean annual exceedance rates as a function of pipe crossing location for 
permanent ground displacement of 70cm, 250cm and 350cm. ( α = 90o in the given 

example) 

 

 

(a) (b) 
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5 Conclusion 

We present the implementation of MC-based simulation techniques for probabilistic hazard 
assessment of dynamic GMIMs and permanent fault displacement that are of significance for 
the hazard assessment of geographically distributed and extended structures for low-
probability-high-consequence seismic events. Determination of hazard levels for 
geographically distributed and geographically extended structures is the major objective of 
Deliverable 3.2 in the STREST project. The MC-based simulations are incorporated with the 
multi-scale random fields (MSRFs) approach to account for the spatial correlation, near-fault 
forward directivity and conditional hazard (cross-correlation) in the variation of dynamic 
intensity measures. The multi-scale random fields provide significant flexibility for instant 
modification of intra-event aleatory variability whenever it is necessary. Our probabilistic 
permanent fault displacement method considers the uncertainty in the pipeline crossing 
location and pipeline crossing angle. Our parametric studies show that these complicated 
seismological factors are important for a proper hazard assessment of geographically 
extended critical infrastructures. In particular, the location uncertainty in fault crossing can 
affect the annual exceedance rates at different performance levels (i.e., serviceability, design 
and “perfect storm” cases). This fact may affect the decisions on the probabilistic risk 
assessment of continuous pipelines. Consideration of all these factors via conventional 
(integral) PSHA can be computationally a challenging task. The MC-based techniques 
discussed in the report provide flexibility to reflect the effects of complicated seismological 
features on to hazard without running complicated probabilistic hazard integrals. Note that 
the discussions on the hazard assessment of continuous pipelines are preliminary and 
enriched by other parametric studies for more conclusive results during the course of the 
project.  
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